SQL INTEGRITY CONSTRAINTS

Constraints are a very important feature in a relational model. In fact, the relational model supports the well-defined theory of constraints on attributes or tables. Constraints are useful because they allow a designer to specify the semantics of data in the database. *Constraints* are the rules that force DBMSs to check that data satisfies the semantics.

Domain Integrity

Domain restricts the values of attributes in the relation and is a constraint of the relational model. However, there are real-world semantics for data that cannot be specified if used only with domain constraints. We need more specific ways to state what data values are or are not allowed and which format is suitable for an attribute. For example, the Employee ID (EID) must be unique or the employee Birthdate is in the range [Jan 1, 1950, Jan 1, 2000]. Such information is provided in logical statements called *integrity constraints*.

There are several kinds of integrity constraints, described below.

Entity integrity

To ensure *entity integrity*, it is required that every table have a primary key. Neither the PK nor any part of it can contain null values. This is because null values for the primary key mean we cannot identify some rows. For example, in the EMPLOYEE table, Phone cannot be a primary key since some people may not have a telephone.

Referential integrity

Referential integrity requires that a foreign key must have a matching primary key or it must be null. This constraint is specified between two tables (parent and child); it maintains the correspondence between rows in these tables. It means the reference from a row in one table to another table must be valid.

Examples of referential integrity constraint in the Customer/Order database of the Company:

- Customer(<u>CustID</u>, CustName)
- Order(OrderID, CustID, OrderDate)

To ensure that there are no orphan records, we need to enforce referential integrity. An *orphan record* is one whose foreign key FK value is not found in the corresponding entity – the entity where the PK is located. Recall that a typical join is between a PK and FK.

The referential integrity constraint states that the customer ID (CustID) in the Order table must match a valid CustID in the Customer table. Most relational databases have declarative referential integrity. In other words, when the tables are created the referential integrity constraints are set up.

Here is another example from a C

Here is another example from a Course/Class database:

- Course(CrsCode, DeptCode, Description)
- Class(<u>CrsCode, Section</u>, ClassTime)

The referential integrity constraint states that CrsCode in the Class table must match a valid CrsCode in the Course table. In this situation, it's not enough that the CrsCode and Section in the Class table make up the PK, we must also enforce referential integrity.

When setting up referential integrity it is important that the PK and FK have the same data types and come from the same domain, otherwise the relational database

management system (RDBMS) will not allow the join. RDBMS is a popular database system that is based on the relational model introduced by E. F. Codd of IBM's San Jose Research Laboratory. Relational database systems are easier to use and understand than other database systems.

SQL NOT NULL CONSTRAINT

a column can hold NULL values.

The NOT NULL constraint enforces a column to NOT accept NULL values.

This enforces a field to always contain a value, which means that you cannot insert a new record, or update a record without adding a value to this field.

Example

NOT NULL on CREATE TABLE

```
CREATE TABLE Persons (
    ID int NOT NULL,
    LastName varchar(255) NOT NULL,
    FirstName varchar(255) NOT NULL,
    Age int
);
```

NOT NULL on ALTER TABLE

ALTER TABLE Persons MODIFY Age int NOT NULL; **UNIQUE** Constraint

The UNIQUE constraint ensures that all values in a column are different.

Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for uniqueness for a column or set of columns.

A PRIMARY KEY constraint automatically has a UNIQUE constraint.

However, you can have many UNIQUE constraints per table, but only one PRIMARY KEY constraint per table.

UNIQUE Constraint on CREATE TABLE

```
CREATE TABLE Persons (
ID int NOT NULL UNIQUE,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int
);
```

OR

```
CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
UNIQUE (ID)
```

);

UNIQUE Constraint on ALTER TABLE

ALTER TABLE Persons ADD UNIQUE (ID);

OR

ALTER TABLE Persons ADD CONSTRAINT UC_Person UNIQUE (ID,LastName);